
Formalization

.... Bailor

 9 -1750!
and Visualization of Domain-Specific
Software Architectures

Paul D. Bailor, David R. Luginbuhl, and John S. Robinson

Department of Electrical and Computer Engineering

Air Force Institute of Technology

Wright-Patterson Air Force Base, Ohio 45483

pbailor_galaxy, afit.af.mil

(513)255-3708

I INTRODUCTION

This paper describes a domain-specific software design

system based on the concepts of software architectures

engineering [Lee and others, 1991] and domain-specific
models and languages [Prieto-Diaz and A rango, 1991].

In this system, software architectures are used as high
level abstractions to formulate a domain-specific soft-

ware design. The software architecture serves as a

framework for composing architectural fragments (e.g.,

domain objects, system components, and hardware

interfaces) that make up the knowledge (or model)

base for solving a problem in a particular applica-

tion area [Lee and others, 1991]. A corresponding soft-

ware design is generated by analyzing and describing

a system in the context of the software architecture

[Lee and others, 1991]. While the software architecture
serves as the framework for the design, this concept

is insufficient by itself for supplying the additional de-

tails required for a specific design. Additional domain

knowledge is still needed to instantiate components of

the architecture and develop optimized algorithms for

the problem domain. One possible way to obtain the

additional details is through the use of domain-specific

languages. Thus, the general concept of a software ar-
chitecture and the specific design details provided by

domain-specific languages are combined to create what
can be termed a domain-specific software architecture

(DSSA).

creation and use of formal, domain-specific languages

to generate software architectures whose architectural

fragments and associated composition rules are main-
tained in a formal knowledge base of objects. These

languages allow definition of the objects making up the
components of the DSSA in terms of the components'

structural and behavioral properties. Additionally, the

domain-specific languages are used to compose the de-

fined objects into a corresponding software design and

resulting Ada implementation. In fact, the production

rules of the grammar for the domain-specific language
can serve as the basis for system composition. This is

consistent with the approach suggested by Batory for

composing hierarchical software systems with reusable

components [Batory and O'Malley, 1992].

From a user interface perspective, software engi-

neers use the domain-specific languages to define object

classes and object composition rules to be placed into

the knowledge base of objects. Alternately, application

specialists (system end-users) use the languages to in-

troduce new object instances and to compose object

instances that currently exist in the knowledge base.

Within the knowledge base, the objects and composi-
tion rules are maintained as executable, formal specifi-

cations providing the software engineer and application

specialist with the ability to rapidly prototype and val-
idate desired system behaviors without having to build

Ada components first.

2 DESCRIPTION OF DOMAIN

SPECIFIC SOFTWARE DES-

IGN SYSTEM

The overall goal of our research is to prototype the

technology required to formally specify, design, and de-

velop an Ada application system using the DSSA ap-

proach described above. A key part of this effort is the

In addition to the domain-specific languages, some

type of object base language is required to formalize

the architecture and corresponding design representa-

tion. Such an object base language would also provide
the ability to analyze and manipulate the objects de-

fined and composed by the domain-specific language.

This object base definition and manipulation language

is used for the continued development of the domain-

specific design and corresponding Ada software compo-
nents. That is, the manipulation language is used to

formallymanipulatethearchitecturalobjectsto obtain
acorrespondingAdadesignrepresentationandAdaim-
plementationof thatobject.Also,theobjectbasema-
nipulationlanguageis thekeytodevelopinganapplica-
tionsystemthat iscomposedofexistingandvalidated
Adssoftwarecomponents.

Thus,a formalframeworkfor definingsoftwarear-
chitecturesanddomainspecificlanguageswouldhave
to consistof the componentslistedbelow.Therela-
tionshipor generalconfigurationof thecomponentsis
shownin Figure1.

1. A formalized object base that serves two functions:

(a) Formal specification of the concept of a soft-
ware architecture consisting of a set of general
abst_ractions associated with software archi-

tectures and a mathematical model of these

abstractions.

(b) Formal specifications of architectural frag-
ments and instances of these fragments devel-

oped through the use of domain-specific lan-

guages as well as the object base manipulation

language.

2. Formal specifications of domain-specific languages

for describing and manipulating objects in the
DSSA.

3. An Ads development capability that uses the for-

mal specification of the architectural components

to generate Ada components and allows for the

composition of existing and validated Ada compo-
nents into an application system.

4. A sophisticated user interface for both the appli-

cation specialist and the software engineer. Note
that visualization capabilities for both the domain-

specific language constructs and the object base are

highly desirable components of the user interface.

For this research effort, a prototype implementa-

tion of the technology will be done using the Software
Refinery TM Environment [Systems, 1990] that consists

of the following components.

1. The Refine wide-spectrum language.

2. The Refine formal object base that is analyzed and

manipulated via the Refine language.

3. The Dialect tool that allows for the definition of

formal languages whose syntactical structures are
directly mapped to objects in the object base. Note

that this mapping is done in such a way that an

abstract syntax tree relationship is maintained be-

tween the language components and corresponding

objects in the object base. This relationship pro-

vides a significant advantage for language transfor-

mation purposes.

7

Bailor

4. The Intervista tool that provides an X-windows

based capability for graphical interaction with the

object base.

Figure 2 graphically depicts the Refine framework. It

provides an ideal platform to prototype the proposed

DSSA technology. The Dialect and Intervista Tools are
used for the User Interface aspect as they provide the

means to define domain-specific languages, map domain

language structures to a formal object base, and visu-
alize both the domain language structures and the soft-

ware architecture. The Refine language provides the

means to manipulate objects in the object base for per-

forming operations such as transforming the formalized

objects into Ada components, analyzing the object's

behavior for validation/verification purposes, and com-

posing sets of objects into a higher level application

system. An important advantage of the Refine frame-
work is that it reduces tool development time to zero.

Thus, it allows the research to focus on the develop-

ment of the new technology immediately.

3 Research Issues

The domain-specific software design system described

above has several important research issues associated

with it that we are currently attempting to address.

1. What are the abstractions associated with the con-

cept of a software architecture, and how can we

formally model these abstractions?

2. What is the feasibility of developing the required

domain-specific languages? There are a number of
relevant Air Force application domains that have

already been analyzed and at least partially struc-

tured using the concepts of a software architecture;
for example, the electronic combat domain of The

Joint Modeling and Simulation System (J-MASS)

[ASD/RWWW, 1990, ASD/RWWW, 1991], the

CaI domain [Plinta and Lee, 1989], and the radar

tracking domain [Jensen and Ogata, 1991]. Addi-
tionally, the DARPA Domain-Specific Software Ar-

chitecture project is funding research in an attempt

to define software architectures in four application
areas. All of these could serve as candidates for de-

velopment of domain-specific languages; however,

we must first address three important sub-issues:

(a) How difficult is it in general to encode the
domain-specific knowledge required to com-

pose objects in the domain into the produc-

tion rules of a grammar? Alternatively, how

difficult is it to develop and formalize the

domain-specific knowledge required for this

and place it into a knowledge base of com-

position rules?

Bailor

if USER INTERFACE

visualization
of domain

language and
object base

I DOMAIN-

I
I

J

FORMALIZED
OBJECT BASE

FOR DSSA

[domain behavior]
J

SOFTWARE ENGINEER:

"*'---DEVELOP ARCHITECTURAL COMPONENTS

APPLICATION SPECIALIST:_

"*- DEVELOP APPLICATION USING COMPONENTS

/ i
Ada DEVELOPMENT CAPABILITY

.l

develop
Ada

components I Ada
. component

library

component
composition

rules

J

OB3ECT BASE

MANIPULATION

LANGUAGE

APPLICATION

SYSTEM

Figure 1: General Configuration for Formalizing a DSSA

8

Bailor

GRAPHICAL
PRESENTATION

AND
INTERACTION

DOMAIN
SPECIFIC

LANGUAGE

INTERVISTA

DIALECT

REFINE
OB3ECT

BASE

REFINE LANGUAGE
• TRANSFORM OB:IECTS
• ANALYZE OBJECTS

DEVELOP ADA
COMPONENTS

DEVELOP APPL.

(COMPOSE
COMPONENTS)

Figure 2: Refine System Framework

(b) Can the same domain-specific language be
used by both the software engineer and the

application specialist?

(c) Is there a core of language constructs that are
common to all domain languages?

3. What is the feasibility of using a knowledge-based

transformation system to develop a highly visual

interface to the domain-specific software design

system that is useful to both the software engineer
and the application specialist?

We have focused our short-term research objectives

towards addressing the above issues first. Specifically,

the research objectives for the first two years of this
effort are to:

1. Define the abstractions associated with the concept

of software architectures and develop a mathemati-

cal model of these abstractions. The Refine system

will be used to prototype and analyze formal mod-
els of software architectures.

2. Analyze a part of the electronic combat domain

and develop the required formal domain lan-

guage(s).

3. Use the Software Refinery Environment to build

a working prototype of our DSSA system that in-
cludes the ability to build a formal object base of

architecture fragments and to apply composition

rules to the fragments to construct domain-specific

software designs in the form of a DSSA.

4. Develop visualizations of both the formal domain

language(s) and the object base.
9

In the following years, we expect the major concentra-

tion to be on using the formalized object base as a basis

for developing the corresponding Ada components and

as a basis for composing an application system within
a domain. Additionally, methods and tools for scaling

the technology up for large scale applications will be

investigated.

4 SUMMARY

We feel the proposed research can have a significant

impact on the methodologies for implementing the con-
cepts of software architectures and domain-specific soft-

ware design, especially in the areas of formalizing soft-

ware architectures and formalizing the application of

domain-specific languages to software specification and

design. Additionally, this research should provide much
insight into the process of object-oriented development

of validated and reusable Ada components that can be

quickly and validly composed into an application sys-

tem for a particular domain.

References

[ASD/RWWW, 1990] ASD/RWWW. :Joint Modeling

and Simulation System (J-MASS): System Concept
Document. Technical report, CROSSBOW-S Archi-

tecture Technical Working Group, December 1990.

[ASD/RWWW, 1991] ASD/RWWW. Software Struc-

tural Model Design Methodology. Technical report,

Architecture Technical Working Group, June 1991.

Bailor

[Batory and O'Malley, 1992] Don Batory and Sean
O'Malley. The Design and Implementation of Hi-

erarchical Software Systems With Reusable Compo-
nents. Technical Report TR-91-22, Department of

Computer Sciences, University of Texas at Austin,

Austin, Texas, January 1992.

[Jensen and Ogata, 1991] Paul S. Jensen and Lori

Ogata. Final Report for Automatic Programming

Technologies for Avionics Software (APTAS). Tech-
nical Report LMSC-P000001, Lockheed Software

Technology Center, Palo Alto, California, July 1991.

[Lee and others, 1991] Kenneth J. Lee et al. Model-

Based Software Development (Draft). Special Report

CMU/SEI-92-SR-00, Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, Pennsylva-

nia, December 30 1991.

[Plintaand Lee, 1989] Charles Plinta and Kenneth
Lee. A Model Solution for the C3I Domain. In

Tri-Ada Conference, pages 56-67. New York: ACM
Press, 1989.

[Prieto-D_az and Arango, 1991] Prieto-

D_az and Arango. Domain Analysis and Software

Systems Modeling. IEEE Computer Society Press :

California, 1991.

[Systems, 1990] Reasoning Systems. Refine User's

Guide. Reasoning Systems, Inc., 1990.

10

